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of perovskites. In fact the only perovskites known to 
the author in which difficulty would occur are NaNbOa 
(phases P and R), PbZrO3, possibly AgNbOa and 
AgTaO3, and KCuF3. In the last case the difficulty, as 
mentioned earlier, is the large Jahn-Teller distortion 
of the octahedra which dominates the symmetry. In the 
other cases, the difficulty lies in the fact that the tilt 
systems are not simple ones, but consist of combina- 
tions of the simple systems. However, even here it is 
possible to go some way towards deriving the correct 
structure, but great care is needed when attempting 
this. Fortunately such structures seem to be quite rare. 

At present this general method is being used tc 
analyse the complex sequence of phases in the system 
Na/KNbOa with considerable success. A preliminary 
note of this work has already been published (Ahtee & 
Glazer, 1974) in which tentative suggestions for the 
various structures have been made. Since then, many 
of these have been verified (manuscript in preparation), 
and this has shown that reliable trial models can be 
obtained very quickly even when there are many pos- 
sible phases within a single solid-solution series. 

I thank Dr H. D. Megaw for introducing me to the 
fascinating complexities of the perovskite structure, 
and the Wolfson Foundation for funds enabling this 
work to be carried out. 
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The origin peak in the Patterson function may be used to construct E values when the number and 
type of the atoms in the structure are known. This is illustrated by an example leading to an agreement 
value between the observed and calculated E values of 0" 170. For comparison, a least-squares calculation 
of the best overall anisotropic temperature factor results in an R of 0.167. The result obtained from a 
Wilson plot is 0.188. 

Introduction 

The origin peak in the Patterson function obeys the 
point-group symmetry of the Patterson function, and 
can therefore be expanded in harmonic functions of the 
appropriate symmetry. If the origin peak, deconvoluted 
with respect to thermal motion, is known, an analysis 
of the terms in the expansion will provide some 
information about the overall anisotropic thermal 
movements. The applied method of analysis, reveal- 
ing this information, follows closely the technique 
used in the analysis of the deformations of atoms 
(Kurki-Suonio & Meisalo, 1967; Kurki-Suonio, 1967, 
1968). 

Description of the method 

The square of the overall temperature factor is written as 

T(H)= ~ T,~(H)K,~(On, q)n). 
n t ~  

The K,~ form a complete set of orthonormal harmonic 
functions adapted to the symmetry of the Patterson 
function, and H, On and ~0n are the spherical coor- 
dinates of the reciprocal-lattice vector H. The functions 
T,,(H) are then calculated from the expression 

T,, , iH)=(4n)zv - '  ~ A(G)K,,* (OG,~o13) 
13 

S 2 x j,(2ngu)j,,(2nGu)u du. (1) 
0 
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j ,  is the nth-order spherical Bessel function, V the 
volume of the unit cell, A(G) the intensity, observed at 
the reciprocal-lattice point defined b y  the vector G, 
divided by the sum of the squares of the scattering 
factors 

A(G)=I(G)/ ~ f f ( G )  
J 

and r the radius of the sphere enclosing the origin 
peak. Equation (1) also forms the basis of a Fourier 
synthesis if A(G) is replaced by AA(G)=A(G)-T(G) ,  
by which the effect of the cut-off in (sin 0)/2 can be 
reduced. The resulting function T(H) can be translated, 
by the method of least squares, to the conventional 
expression for an anisotropic temperature factor 

T(H) = c 2 exp [ -  2(blth 2 + b22 k2 -q- b3312 
+ b~2hk + b~3hl + b23kl)] (2) 

in terms of which the result is easily interpreted. 

A n  example 

The above method was tested on the structure of 2,7- 
di-t-butylpyrene (Hazell & Lomborg, 1972). In the 

m 

space group P1 the only symmetry element in the 
Patterson function, besides translational symmetry 
elements, is a centre of inversion, which limits the 
possible harmonics to spherical harmonics of even 
order. Based on the refined parameters two sets of 
intensities, one with a cut-off in (sin 0)/2 at 0.6 A -1 
and the other at 0.4 A -I,  were calculated and used in 
the analysis as observed intensities. The results shown 
in Tables 1 and 2 are obtained by carrying out the 
analysis to second order with r=0 .8  A, 

A A ( G ) = A ( G ) - c  2 exp [ - 2 B  (sin 0)2/2 2] 
and 

: {(  Zyl 
J J 

where Z~ is the atomic number of atom.j  and e and B 
are the scale factor and the isotropic temperature fac- 
tor found from the Wilson plot (Wilson, 1942). The 
agreement values are calculated by 

R ( e ) =  ( (lec ,ol- leo,,d) /2: le0 ,ol } , 
where E¢.~¢ are the calculated E values, and, for the 
space group PT, Eobs = (A/T) u2. The last row in Table 1 

Table 1. Agreement values between observed and cal- 

Cut-off 
radius (A -1) 
Number of 
reflexions 
c 
B 
R(E) 
R(E>_ 1) 
R(V) 

culated E values 

Wilson plot Present method 

0.6 0.4 0-6 0-4 

1591 464 1591 464 
0.958 0.804 1.026 0.965 
3.083 2.320 
0.188 0.176 0.170 0.106 
0.141 0.169 0.114 0.086 
0.217 0-347 0.070 0.150 

shows the agreement between r/(H), the vector-inde- 
pendent part of IEo~s(H)[ 2, and unity. 

Table 2. Anisotropic temperature factors (x  10 4) 

R value bll b22 b3a bt2 b13 b23 
0"167 131 330 120 150 121 163 
0-170 128 299 116 145 112 135 
0"106 128 238 110 111 75 63 

The agreement obtained illustrates that the origin 
peak in the Patterson function, based on [El 2 values, 
to a large extent can be approximated by the Fourier 
transform of the function T(H), and the R of 0.07 may 
then be interpreted as a measure of the efficiency with 
which the origin peak can be removed. 

The temperature factors found are shown in Table 2. 
The first row shows the result obtained by minimizing 
~[T(H)-A(H)/IEcaI¢(H)IZ] z for IEcalc[>0"01, and 
H 
(sin 0max)/).=0"6 ]k -x. In this case a scale factor of 
0.986 was found, and the R between calculated and 
observed E values was 0.167. The second and third 
rows show the parameters found from equation (2) 
with (sin 0max)/)~ equal to 0"6 A-1 and 0.4 A-1, respec- 
tively. It should be remarked that no correction for the 
cut-off in the Patterson function has been made. 

C o n c l u s i o n  

As demonstrated by the example, the result of an 
analysis of the origin peak can lead to an overall 
anisotropic temperature factor very close to the best 
possible. Furthermore it is seen that even with a severe 
cut-off in (sin 0)/2, a case in which the Wilson plot 
produces unreliable results, reasonable temperature 
factor parameters and scale factor are obtained. 

The deviation from sphericity of the origin peak is 
considered to be due to thermal motion. However, any 
modification of the data of the form / ( H ) =  
T(H)IF(H)[ 2 can be dealt with by the method. For 
example a preliminary correction for absorption can 
be achieved by using the full data set and by including 
harmonic functions which are forbidden by the space- 
group symmetry. 

All calculations were performed on the IBM 
370/165 at NEUCC, Technical University of Den- 
mark. 
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